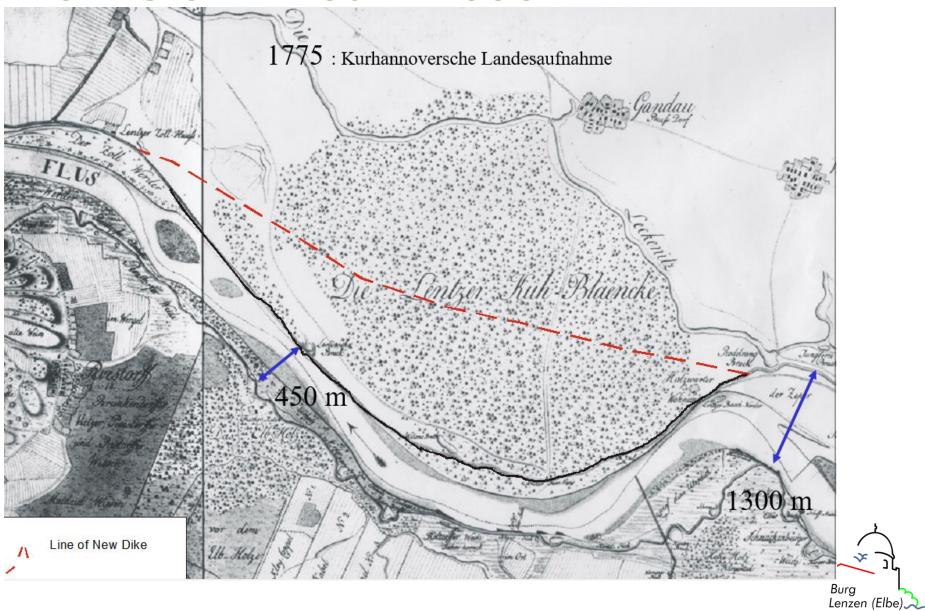
# Wiederherstellung von Auen durch Deichrückverlegung:

# Überblick über die 30-jährige Projektgeschichte der Deichrückverlegung Lenzen

**Jochen Purps** 


Büro für regionale Entwicklung & ökologische Planungen Bad Wilsnack

Netzwerktreffen in Lenzen (Brandenburg) 26.-28.09.2025



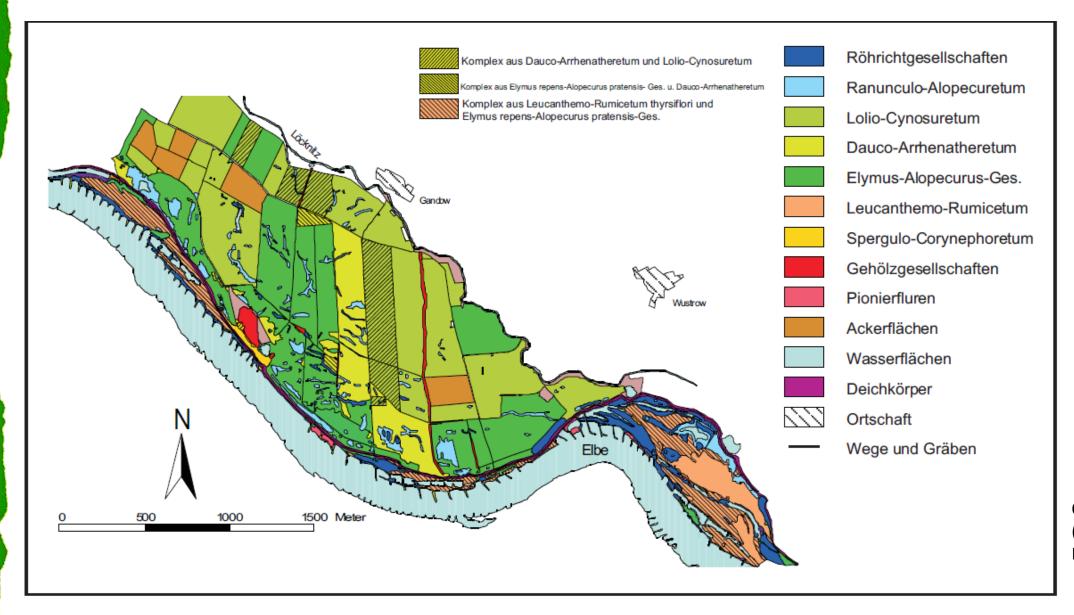


## Die Vision im Jahr 1995





# Ausgangszustand

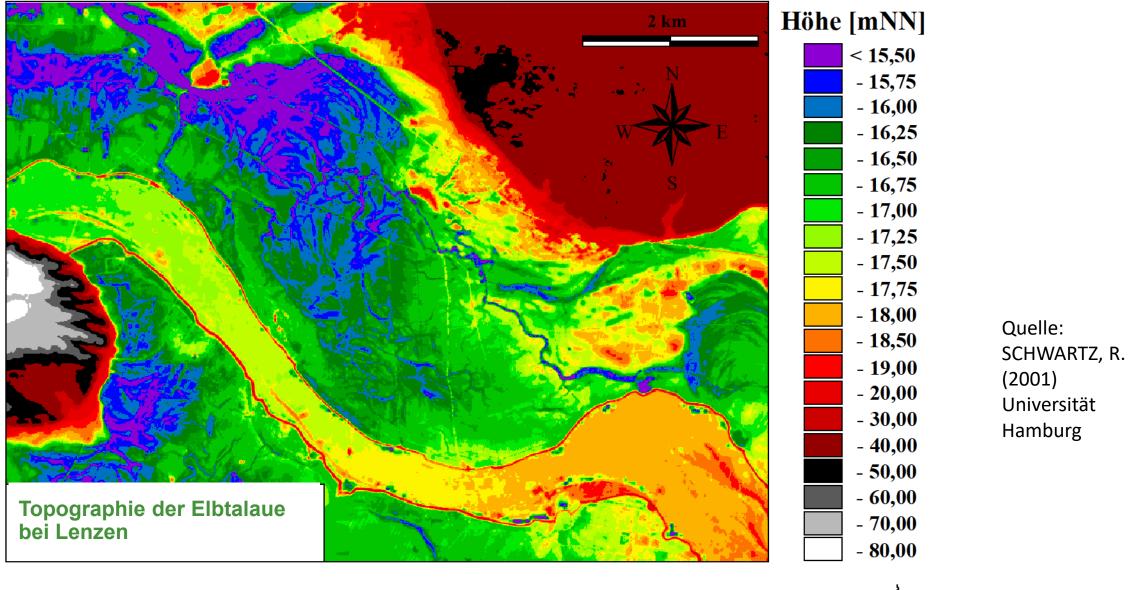



Mai 1999; Foto: Jochen Purps





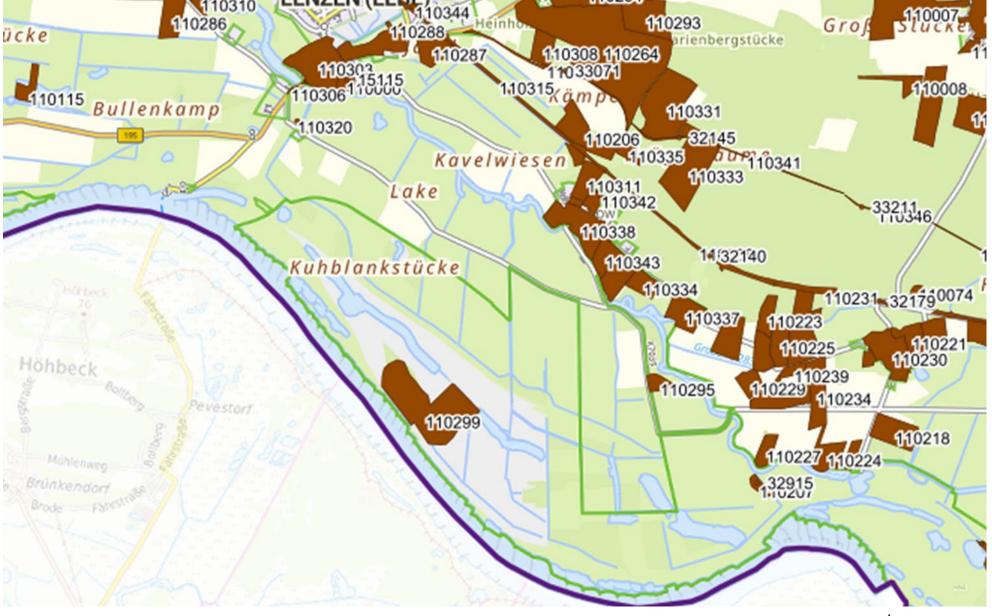





Quelle: HELLWIG (2002), Univ. Hannover

Abb. A1: Karte der aktuellen Vegetation des potentiellen Rückdeichungsgebietes Lenzen-Wustrow








Gefälle der Elbe ca. 13 cm/km







Bodendenkmäler in der Lenzener Elbtalaue (Quelle: geoportal.brandenburg.de) am Rand der morphologischen Aue





## **Umfangreiche Vorarbeiten**

# 1 Deichrückverlegung und Auwaldregeneration EU-LIFE-Projekt 1994-1998:

Konzeptentwicklung, Flächenerwerb (550 ha), Auwaldpflanzungen und –initialisierungen Hydraulische Studie (BAW). Summe = 6 Mio DM.

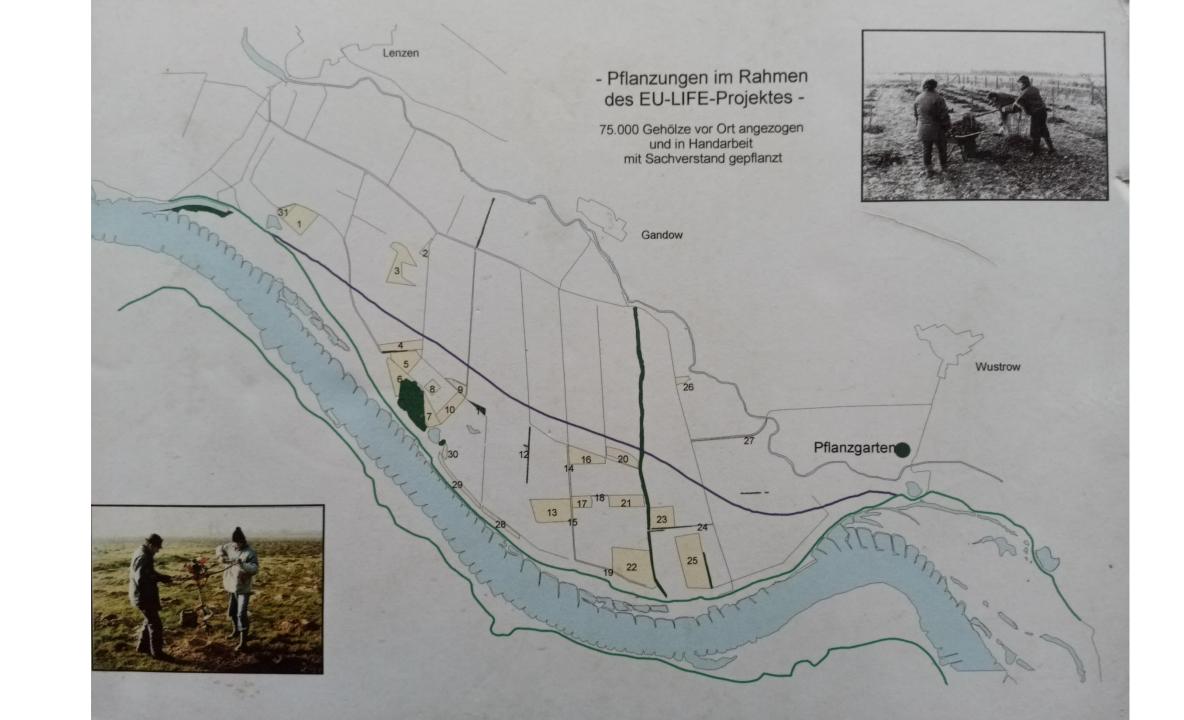
#### 2 BMBF "Elbe Ökologie" 1997-2001:

Prognosen und Forschungen im interdisziplinären Verbund. 3,8 Mio DM.

#### 3 Bodenordnungsverfahren Lenzen 2000-2022

3600 ha, 540 Teilnehmende

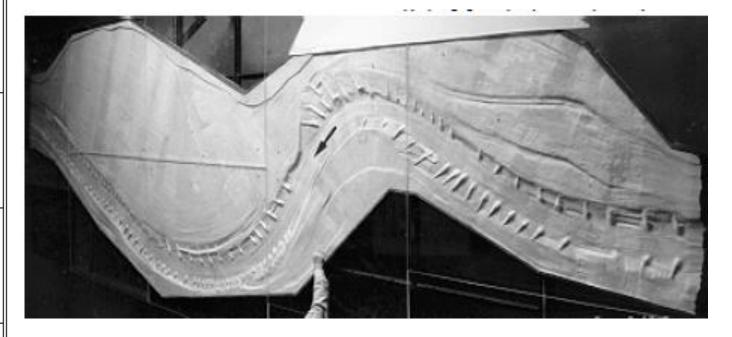







Pflanzarbeiten Mitte der 1990er Jahre Foto: Frank Neuschulz

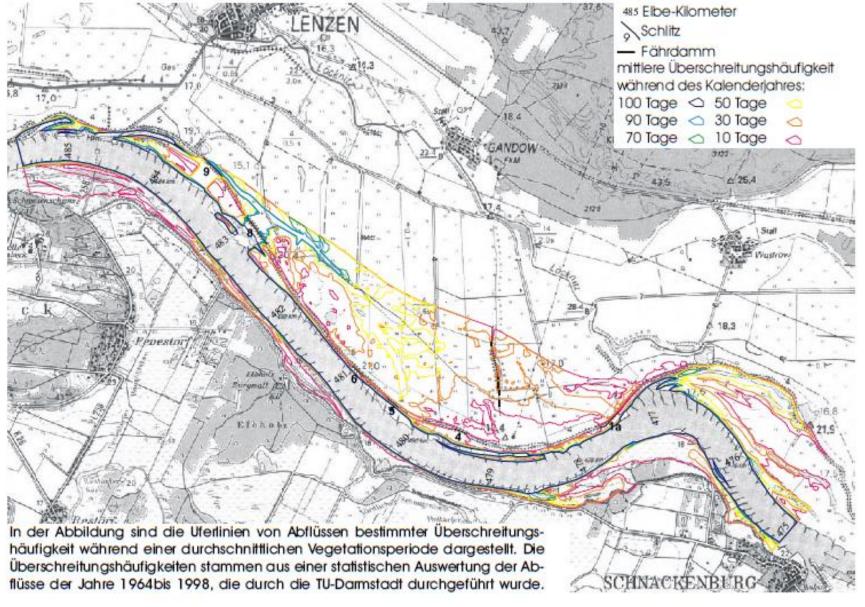







#### Modellierungen der Bundesanstalt für Wasserbau

| + |   |                                                                                                                                                                                        |                                                                                                                                                                                                  |  |  |  |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |   | Modellart                                                                                                                                                                              | Untersuchungsumfang                                                                                                                                                                              |  |  |  |
|   | 1 | eindimensional hydronume-<br>risch (1D-HN) stationär,<br>feste Sohle,<br>E1-km 438 bis 495 mit Querpro-<br>filabstand 200 - 500 m,<br>E1-km 471,5 bis 485 mit Pro-<br>filabstand 100 m | Berechnung von stationären<br>Wasserspiegellagen und über<br>Breite und Tiefe gemittelten<br>Strömungsparametern (langer<br>Untersuchungsabschnitt) Kopp-<br>lung mit 2,3,4                      |  |  |  |
|   | 2 | 1D-HN, quasistationär, Fest-<br>stofftransport<br>E1-km 438 bis 495 mit Querpro-<br>filabstand 200 bis 500 m                                                                           | Berechnung der langfristigen<br>Veränderung von Wasserspie-<br>gel- und Sohlenlagen sowie von<br>über Breite und Tiefe gemittel-<br>ten Strömungsparametern (lan-<br>ger Untersuchungsabschnitt) |  |  |  |
|   | 3 | 1D-HN-instationär, mit fester<br>Sohle (hydraulisches Wellen-<br>ablaufmodell)<br>E1-km 438 bis 495 mit Querpro-<br>filabstand 200 bis 500 m                                           | Berechnung der Veränderung<br>des Wellenanlaufs mit Hilfe ein-<br>dimensionaler Betrachtungen<br>ergänzt durch 2D-Zellen zur<br>Darstellung der Rückdeichungs-<br>flächen                        |  |  |  |
|   | 4 | zweidimensional hydronumerisch (2D-HN), stationär und instationär, feste Sohle E1-km 475,0 bis 485,5                                                                                   | Berechnung der flächenhaften<br>Verteilung der Wasserspiegella-<br>gen und tiefengemittelter Strö-<br>mungsparameter für einen mit-<br>telgroßen Flußabschnitt                                   |  |  |  |
|   | 5 | aerodynamisch (AD), statio-<br>när, feste Sohle<br>E1-km 474,2 bis 484,1; Längen-<br>maßstab 1:1000<br>Höhenmaßstab 1:200<br>Modellausdehnung:                                         | Erhebung räumlicher Strö-<br>mungsparameter für einen etwa<br>3- bis 4-jährigen Hochwasserab-<br>fluß (Q = 2300 m³/s) in einem<br>mittelgroßen Flußabschnitt                                     |  |  |  |

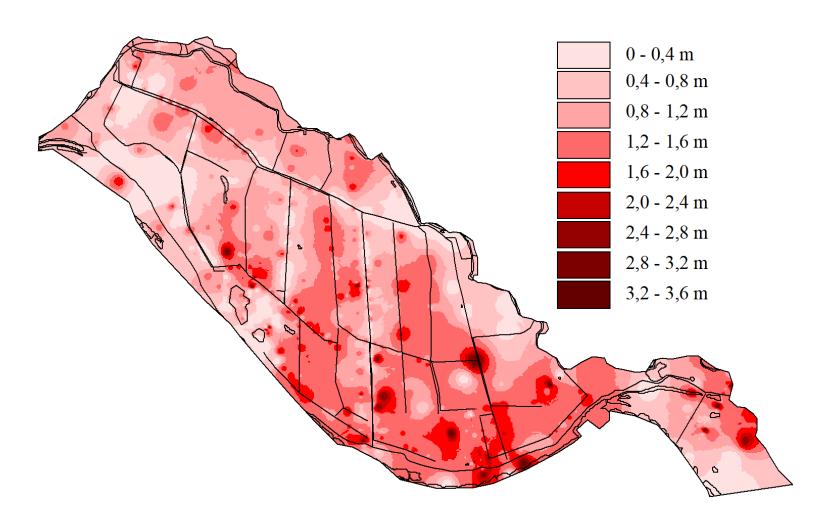

9,0 m x 3,0 m



Aerodynamisches Modell der BAW 1998



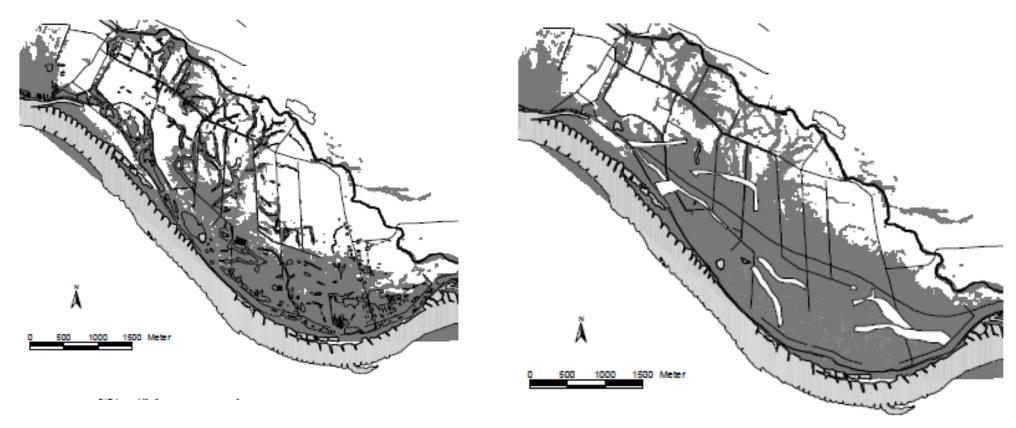





Quelle: FAULHABER & BLEYEL, BAW 2002






#### Deckmächtigkeit der Auenlehmschicht



Quelle: SCHWARTZ, R. (2001) Universität Hamburg







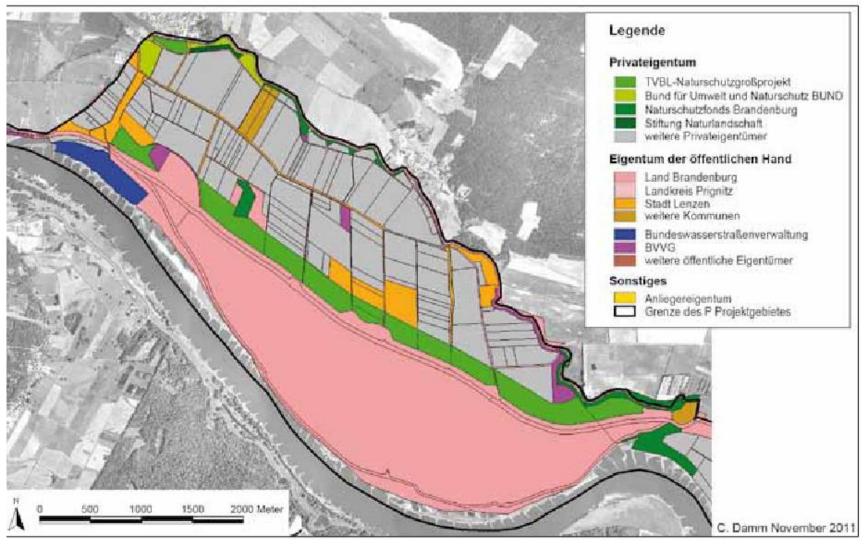
Veränderungen des Qualmwasseraufkommens (Druckwasser)

Quelle: MONTENEGRO et al. 2000, TU Darmstadt





# Bodenordnungsverfahren Lenzen




Besitzkarte alter Bestand (SÜNDERHAUF (2014), LELF)






#### Bodenordnungsverfahren Lenzen



Besitzkarte neuer Bestand, DAMM 2011









Mit dem Hochwasser 2002 erhält das Projekt den entscheidenden politischen Schub



Foto: Jochen Purps



Zuwendungsbescheid für Phase 1 des Naturschutzgroßprojektes Lenzener Elbtalaue im August 2002 Im Bild Dr. Frank Neuschulz, Projektinitiator, und Umweltminister Jürgen Trittin

Projektträger Naturschutzgroßprojekt: Trägerverbund Burg Lenzen e.V.







Foto: Jochen Purps

Projektleiter Dr. Christian Damm erläutert die Planungen gegenüber dem Lenzener Angelverein







Landesumweltamt Brandenburg | Postfach 60 10 61 | 14410 Potsdam

zur Planfeststellung in 2005

(Umfang: 208 Seiten!)

#### Landesumweltamt Brandenburg

Regionalabteilung West - Genehmigungsverfahrensstelle -

Berliner Straße 21 - 25 14467 Potsdam

Bearb.: Jörg Hennemann
Gesch.Z.: oWB - PFB - HWS - 1/05
Hausruf: 0331/2776 - 462
Fax: 0331/2776 - 236
Internet: www.brandenburg.de/lua

Jörg.Hennemann@lua.brandenburg.de

Potsdam, 11. Februar 2005

#### Planfeststellungsbeschluss

(Reg.-Nr.: oWB - PFB - HWS - 1/2005)

für den

X. BA der Sanierung des rechten Elbedeiches: Deichrückverlegung Wustrow - Lenzen von Deich-km 41,200 bis Deich-km 48,389





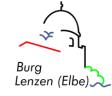


Erster Spatenstich im September 2005

Foto: Jochen Purps



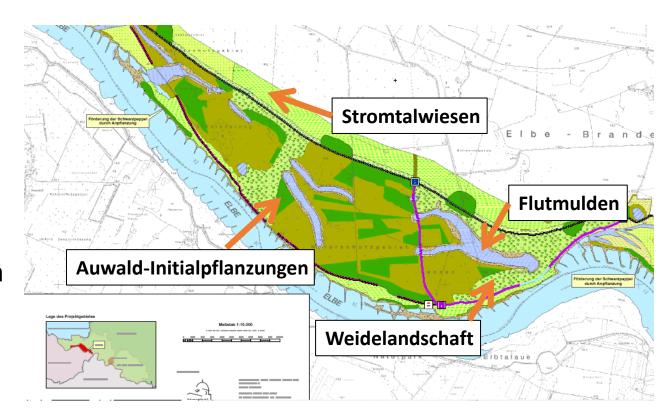





# Naturschutzgroßprojekt "Lenzener Elbtalaue"

- Umsetzung 2002-2011, Chance.natur
- 1. große Deichrückverlegung Deutschlands
  - ▶ 420 ha Auen reaktiviert
  - Wiederherstellung naturnaher, dynamischer und funktionsfähiger Flusslandschaft
  - Förderung auentypischer Arten
  - Synergien zwischen wirkungsvollem Hochwasserschutz und Naturschutz




**Evaluation** 2016/17 und 2021-2023





#### Maßnahmen

- 6,1 km Neudeich bis 1,3 km ins Landesinnere durch Land Brandenburg
- 3 Flutmuldenkomplexe auf 48 ha
- Auenwaldentwicklung
  - von 1995 bis 2023 Initialpflanzungen auf ca. 150 ha
  - Sukzession auf ca. 200 ha
- Halboffene Weidelandschaft auf ca. 30 ha
- Schlitzung des 7,4 km Altdeichs

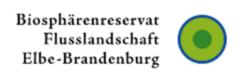






#### **Evaluation**

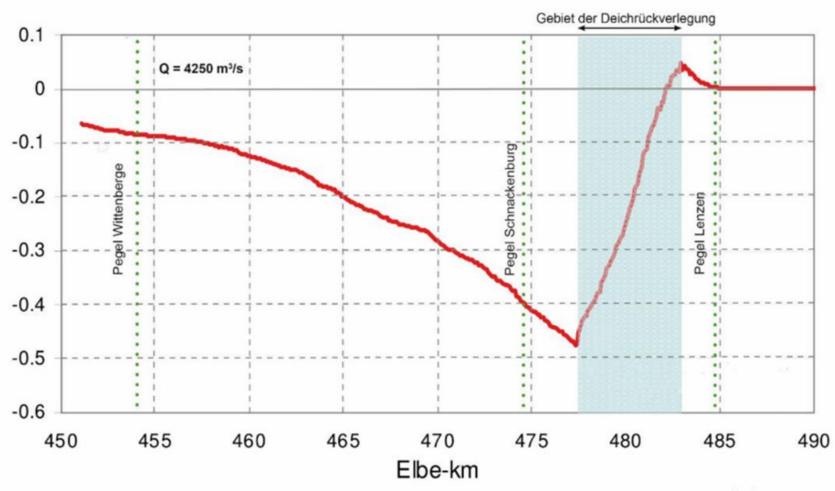
- Evaluation mit Berichtspflicht nach 5 und 10 Jahren
- Datenaufnahme 2016/ 2017 und 2021-2023


Biosphärenreservat: Stromtalwiesen, Auenwald-Pflanzungen,

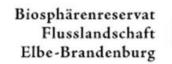
Weidelandschaft, Avifauna, Bodenparameter

TVBL: Fische und Sozio-Ökonomie

Gesamtkoordination, Bericht


 z.T. weitere Daten im Rahmen der Erstellung von Managementplänen, Forschungsarbeiten etc. verfügbar








## Hochwasser



Quelle: Promny et al.(2014) in Korrespondenz Wasserwirtschaft, Nr. 6, S. 344-349









Lage der Auwaldneuanlagen im Naturschutzgroßprojekt Lenzener Elbtalaue





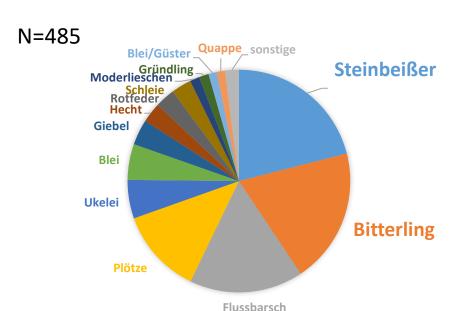
#### Naturnahe Flusslandschaft – Auenwald

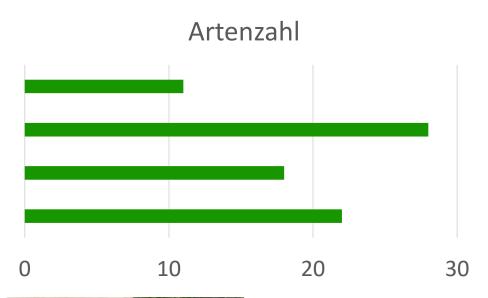
#### Überlebensraten (%) 2009 bis 2021 für alle Großbaumarten im Untersuchungsgebiet

| Großbäume                                 | Pflanzung | Anzahl<br>2009 | Ü-Rate<br>2009 [%] | Ü-Rate<br>2012 [%] | Ü-Rate<br>2016 [%] | Anzahl<br>2021 | Ü-Rate<br>2021 [%] |
|-------------------------------------------|-----------|----------------|--------------------|--------------------|--------------------|----------------|--------------------|
| Gemeine Esche (Fraxinus excelsior)        | 278       | 94             | 34                 | 4                  | 3                  | 5              | 2                  |
| Schwarzpappel<br>( <i>Populus nigra</i> ) | 136       | 2              | 1                  | 0                  | 0                  | 0              | 0                  |
| Stieleiche ( <i>Quercus</i> robur)        | 928       | 405            | 44                 | 17                 | 6                  | 57             | 6                  |
| Winterlinde ( <i>Tilia</i> cordata)       | 144       | 69             | 48                 | 8                  | 8                  | 11             | 8                  |
| Flatterulme ( <i>Ulmus</i> laevis)        | 540       | 321            | 59                 | 22                 | 21                 | 108            | 20                 |
| Feldulme ( <i>Ulmus</i> minor)            | 392       | 194            | 49                 | 31                 | 15                 | 26             | 7                  |
| Summe<br>Großbäume                        | 2418      | 1085           | 45                 | 18                 | 10                 | 207            | 9                  |







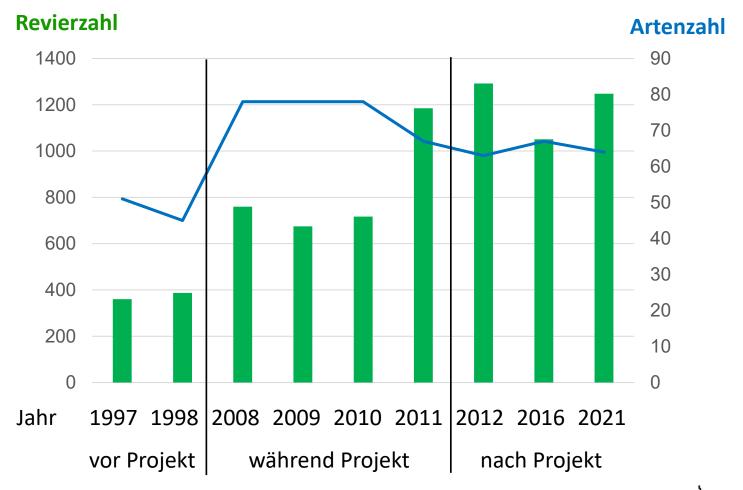

# **Auentypische Arten – Fische**

#### Erfassungen:

- 2011: Institut für Binnenfischerei e.V. Potsdam-Sacrow
- 2013: Masterarbeit Eva Larges
- 2016/17: AN Mattias Hempel
- 2022: AN Jakob Streybell








Quappen in Flutmulde Ost Altersklasse 0+ (Hempel, 2017)





# Auentypische Arten – Vögel







# Auentypische Arten – Vögel

Erwartungswert (durchschnittlicher Anteil am Gesamtbestand entsprechend dem Flächenanteil des Deichrückverlegungsgebiets am Vogelschutzgebiet: 0,8%

| Art              | Gilde                  | VS-<br>RL | RL<br>D | RL<br>BB | Bestand<br>DRV 2021 | Gesamtbest and SPA | Anteil<br>DRV |
|------------------|------------------------|-----------|---------|----------|---------------------|--------------------|---------------|
| Blaukehlchen     | Gewässer & Röhrichte   | Х         |         | 3        | 16                  | 15-20              | 91%           |
| Knäkente         | Gewässer & Röhrichte   |           | 2       | 3        | 4                   | 8-12               | 40%           |
| Schilfrohrsänger | feuchtes Offenland     |           |         | V        | 62                  | 150-180            | 38%           |
| Schnatterente    | Gewässer & Röhrichte   |           |         |          | 8                   | 20-40              | 27%           |
| Wiesenpieper     | feuchtes Offenland     |           | 2       | 2        | 61                  | 200-250            | 27%           |
| Braunkehlchen    | feuchtes Offenland     |           | 2       | 2        | 84                  | 500-550            | 15%           |
| Wendehals        | Gehölze des Offenlands |           | 3       | 2        | 3                   | 20-25              | 13%           |
| Sperbergrasmücke | Gehölze des Offenlands | Х         | 3       | 3        | 10                  | 65-75              | 10%           |





Quelle: GFN UMWELTPARTNER (2021)

#### **Fazit**

- Etablierung auentypischer Vegetation mit großen Schwierigkeiten behaftet
  - Stromtalwiesen nutzungsabhängig
  - Überlebensraten Auenwald Pflanzungen gering aber mittlerweile stabil
- Durch Nutzungsaufgabe und Hochwasserdynamik Entwicklung strukturreicher Landschaft
- Förderung auentypischer Arten sehr erfolgreich, DRV hat herausragende Bedeutung für den Vogelschutz
- Hervorragende Synergien zwischen Hochwasservorsorge und Natur- und Klimaschutz

#### **Ausblick**

- Aktuell Nachpflanzungen und Schutz vorhandener Jungbäume im Rahmen des MediAN-Projektes durch den TVBL
- Prüfung der Vertiefung von Schlitz 1 im Rahmen einer Masterarbeit auf
  - Wassereinstrom
  - Standorteigenschaften Hartholz-Auenwald
- Abstimmungen zu Fortführung Evaluation zwischen Projektträger, Biosphärenreservat und Bundesamt für Naturschutz sowie zu bestehenden Forschungskooperationen







2001

#### Dank

**EU-Life Projekt 1994-1998** 

Forschungsprojekt 1996-



GEFÖRDERT VOM



**FORSCHUNGSVERBUND** 





#### Naturschutzgroßprojekt Lenzener Elbtalaue 2002-2011



für Umwelt, Naturschutz, nukleare Sicherheit















und Verbraucherschutz















