

Grünlandrenaturierung und ihre Erfolgskontrolle

Dr. Simone Schneider & Franziska Breit Naturschutzsyndikat SICONA

9. Netzwerktreffen Renaturierung | 31.05.2024

SICONA Naturschutzsyndikat

- Zweckverband von 43 Gemeinden, in der Naturschutz umgesetzt wird
- seit 1990, 80 Mitarbeiter

Aufgaben

- Erhaltung der Biodiversität und Landschaften
- praktische Naturschutzarbeit
- Arten- und Biotopschutzprojekte
- Durchführung von Landschaftspflegearbeiten
- Renaturierungen
- Vertragsnaturschutz
- Beratung zum Thema Natur- und Landschaftsschutz
- Sensibilisierung & Wissensvermittlung
- ..

Alles aus einer Hand

- Planung der Geländearbeiten
- Umsetzung mittels eigenem Fuhrpark
- Monitoring & wissenschaftliche Erfolgskontrolle

Fotos: SICONA

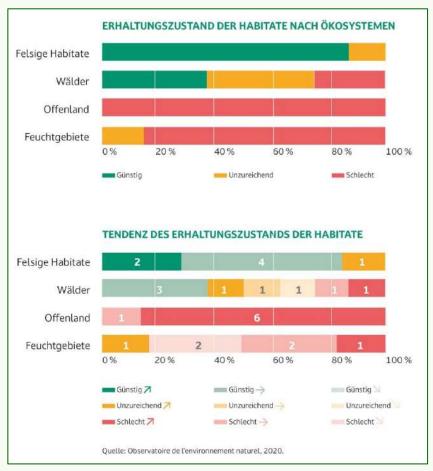
Luxemburg: 2.586 km² SICONA: 847 km²

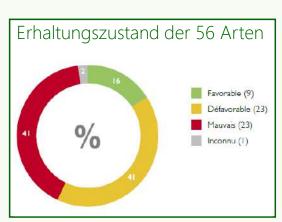
Zustand der Natur in Luxemburg

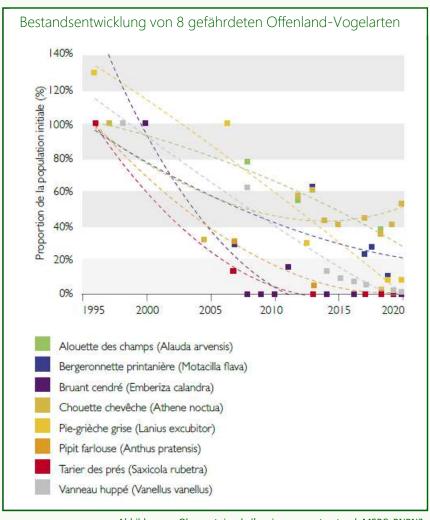
Die Denaturierung des Bodens durch Bebauung und Versiegelung in Luxemburg liegt deutlich über dem europäischen Durchschnitt.

Luxemburg ist das am stärksten zersiedelte Land in Europa.

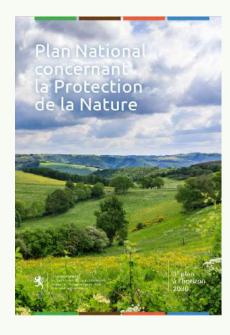
2/3 der geschützten Lebensräume von europäischer Bedeutung befinden sich in einem ungünstigen Erhaltungszustand.


4/5 der geschützten Arten von europäischer Bedeutung befinden sich in einem ungünstigen Erhaltungszustand.




Zustand der Natur in Luxemburg

Arten der Offenlandschaft, Feuchtgebiete und Gewässer am meisten bedroht


Nationaler Naturschutzplan

Dritter nationaler Naturschutzplan sieht konkrete Zielvorgaben bis 2023 zur Optimierung des Erhaltungszustandes, zur Wiederherstellung und Neuanlage gefährdeter Biotope vor.

rechtliche Verankerung im Januar 2023

Er besteht aus 4 Säulen:

1. Schutz

2. Wiederherstellung

3. Wandel

4. Internationales

Nationaler Naturschutzplan

Schutz der Natur

- ✓ bis 2023 sollen 30 % der Landesfläche unter rechtlichen Schutz (akt. 28,69 %)
- ✓ Bis 2023 sollen 10 % der Schutzgebiete unter strengen Naturschutz (akt. 4,4 %)
- ✓ Umsetzung der bereits verabschiedeten Managementpläne für die einzelnen Gebiete

Wiederherstellung zerstörter Lebensräume

- ✓ Verhinderung jeglicher Verschlechterung der Erhaltungszustände
- ✓ Verbesserung bzw. Wiederherstellung des Erhaltungszustands von mind. 30 % der Lebensräume und Arten
- ✓ Verbesserung der Vernetzung und Stärkung der Widerstandsfähigkeit der Ökosysteme
- ✓ Umsetzung und Priorisierung der Aktionspläne "Arten" und "Lebensräume"

Erhaltungszustand artenreiches Grünland in Lux

- Grünland: 51 % der landw. Nutzfläche ca. ¼ naturschutzfachlich relevant
- europäisch und national geschützte Grünlandtypen FFH 6510/Glatthaferwiesen: 2.902 ha → 4 % des Grünlandes BK10 & 11/Feuchtwiesen: 990 ha → 1,5 % des Grünlandes

Arten

- Mehr als die Hälfte der Arten des Graslandes sind gefährdet.
- 26 % aller bedrohten Arten Luxemburgs sind Arten des Graslandes.

- → Erhaltungszustand: schlecht
- → quantitativer & qualitativer Rückgang

Fotos: © Schneider

Grünland-Strategie & Nationaler Naturschutzplan setzen Zielvorgaben

Ziel 1: Erhalt aller Magerer Flachland-Mähwiesen und Feuchtwiesen sowie weiterer gefährdeter Grünlandtypen

Ziel 2: Aktives Entgegenwirken weiterer Verluste artenreicher Grünlandbestände durch Intensivierung oder Brachfallen

Ziel 3: Optimierung des Vertragsnaturschutzes

Ziel 4: Verbesserung der landwirtschaftlichen Beratung zur extensiven Nutzung von artenreichem Grünlan

Ziel 5: Förderung innovativer sowie altbewährter Nutzungskonzepte für die Verwertung des Aufwuchses von artenreichem Grünland und weiterführender Produkte

Ziel 6: Umsetzung von Grünland-Renaturierungen

Ziel 7: Etablierung flächendeckender Monitorings

Ziel 8: Sensibilisierung der Landwirte zum Mehrgewinn extensiver Grünlandbewirtschaftung & Wertschätzung

Ziel 9: Verstärkung der Zusammenarbeit zwischen Landwirtschaft und Naturschutz

Ziel 10: Sensibilisierung der Öffentlichkeit zum gesellschaftlichen Nutzen des artenreichen Grünlandes

Ziel 6.1: Standardisierung der Grünland-Renaturierungen auf nationaler Ebene

- Umsetzung der Renaturierungsziele des Nationalen Naturschutzplans
- Renaturierung anderer Flächen (intensives Grünland, Äcker, Brachflächen, verbuschte Flächen)
- neben Mahdgutübertragung, Einsatz von autochthonem Saatgut (mit Seedharvester geerntetes Saatgut, Wilpflanzensaatgut aus Luxemburg)
- Sicherung gefährdeter typischer Grünlandarten durch Wiedereinbringen

Handlungsempfehlung

Geförderter Flächenaufkauf

Begleitung der Umsetzungen durch die Koordinationsgruppe

Anwenden des Praxis-Leitfadens zur Renaturierung von artenreichem Grünland

Ausarbeitung eines nationalen Spenderflächenkatasters

Koordination des **Sammelns** von Wildpflanzensamen

Ziel 6.2: Vereinfachung der technischen Umsetzung der Grünlandrenaturierungen

 technische Umsetzung der erforderlichen Grünlandrenaturierungen muss für alle Akteure zugänglich gemacht werden

Handlungsempfehlung

Durchführung von **Demonstrationsworkshops** für Praktiker

Aufbau einer **Produktion** von gebietseinheimischem **Saatgut** von Wildpflanzen

Suche von **regionalen Betrieben**, die sich auf Grünlandrenaturierungen & Saatgutproduktion spezialisieren

Aus-/Aufbau funktioneller Maschinen-Pools

Weiterentwicklung der Renaturierungsverfahren im Austausch mit Renaturierungs-Arbeitsgruppen im Ausland → Netzwerk Renaturierung

Fotos: © SICONA

Ziel 7: Etablierung flächendeckender Monitorings

 Monitoring und Erfolgskontrollen zur regelmäßigen Überprüfung des Zustandes der durch Bewirtschaftungsverträge gesicherten Flächen, aller geschützten Grünlandbiotope sowie der Renaturierungsflächen

Handlungsempfehlung

Durchführung eines nationalen floristischen Monitorings

Durchführung der Erfolgskontrollen der Grünlandrenaturierungen

Foto: © SICONA

Renaturierungsverfahren im Grünland

- 1. Mahdgutübertragung (seit 2000, > 150 Hektar)
- 2. Ansaat direkt geernteter **Wiesenmischungen**, Ernte mit Seedharvester *eBeetle*® (seit 2017, > 50 Hektar)
- 3. Anpflanzungen seltener Pflanzenarten (mehr als 25.000 Jungpflanzen)
- 4. **Aussaat** von gebietseigenem, zertifiziertem **Wildpflanzensaatgut** (seit 2023, Einsatz steigend)

Ziel-Biotope der Renaturierungen:

Glatthaferwiesen FFH 6510 Sumpfdotterblumenwiesen BK10/11 Pfeifengraswiesen FFH 6410 Sandmagerrasen BK 07 Halbtrockenrasen FFH 6210 Calluna-Heiden FFH 4030 ...

Fotos: © SICONA

- frühzeitige Planung
- Auswahl einer geeigneten Renaturierungsfläche (Dokumentation Vegetation & Boden)
- Absprachen mit Besitzern und Bewirtschaftern
- Zugang Maschinen gewährleistet?
- Ist extensive Bewirtschaftung nach Renaturierung sichergestellt?
- Steht die Finanzierung?
- Auswahl Verfahren
- Auswahl Spenderfläche oder Samenmaterial
- Spenderflächenkataster pflegen
- Bodenvorbereitung

Mahdgutübertragung / Ansaaten direkt geerntete Mischungen

Bodenvorbereitung

Mahd Spenderfläche

Mahdgutübertragung

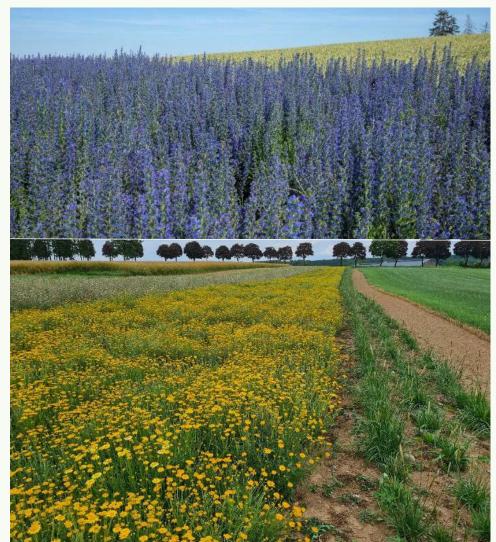
Verteilen

Beerntung

Ansaat

Walzen

Ansaat mit autochthonem Saatgut aus zertifiziertem Anbau




Erfolgskontrolle

- Regelmäßige Erfolgskontrolle & Nachpflege sind essentiell!
- Zielarten? Problemarten? Pflegeschnitt/Ampferstechen notwendig?
- geeignete Nachpflege

Empfänger- und Spenderflächen

- semiquantitative Schätzskala auf gesamter Parzelle
- vor der Renaturierung und anschließend in Abständen von 6 Jahren

Empfängerflächen

- Dauerplots 2 x 8 Meter in renaturierten und in nicht renaturierten Teilbereichen (Renaturierungs- & Kontrollplot)
- Erfassung im Jahr der Renaturierung + alle 3 Jahre
- Deckungsschätzung erweiterte Braun-Blanquet-Skala nach Wilmanns (1989)

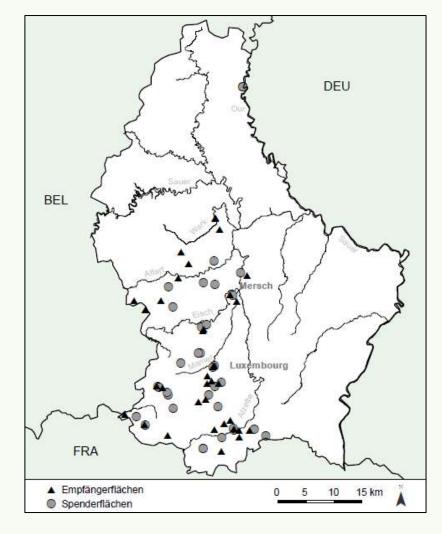
Wolff & Schneider, acc.: Renaturierungsverfahren im mesophilen Grünland – ein Erfahrungsbericht aus der Praxis aus Luxemburg. BfN-Schriften.

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173. https://doi.org/10.19217/NuL2024-04-01

Fragestellungen

- Welche Zielarten des FFH-LRT 6510 haben sich auf den Empfängerflächen etablieren können und wie hoch sind deren Übertragungsraten in Abhängigkeit der Vornutzung?
- Wie haben sich die Anzahl und Deckung der Zielarten sowie das Kräuter-Gräser-Verhältnis in den renaturierten Bereichen entwickelt?
- Haben sich die renaturierten Bereiche in Bezug ihre Artenzusammensetzung an die Spenderflächen angeglichen?
- Haben sich die Zielarten auch auf die nicht renaturierten Bereiche ausgebreitet?
- Wurde die lebensraumtypische Artenzusammensetzung des FFH-LRT 6510 auf den Empfängerflächen erreicht?

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.



Datenauswahl & -aufbereitung

- Analyse von 202 Artenlisten von 43 Renaturierungen
- Daten aus 2012 bis 2022

- Parameter:
 - Artenzahl aller Blütenpflanzen
 - Anzahl & Deckung an 6510-Zielarten (insg. 63 Arten)
 - Anzahl seltener & gefährdeter Arten (insg. 10 Arten)
 - mittlere ungewichtete Ellenbergzeigerwerte für Feuchte, Reaktion und Nährstoffe

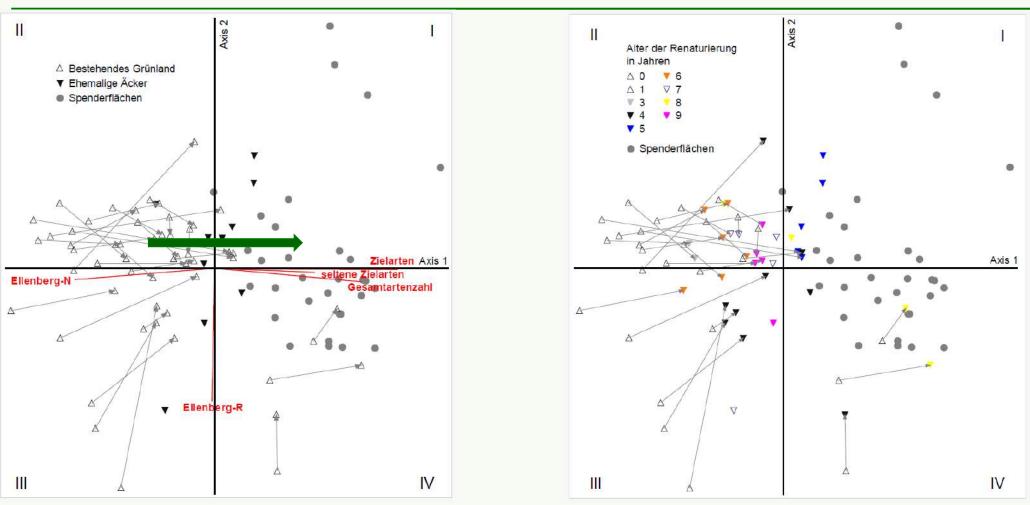
Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173.

Datenauswertung

- Wilcoxon-Rangsummentest & ANOVA mit Post-hoc-Tukey-Test:
 - Vergleich Anzahl & Deckung an 6510-Zielarten zwischen Empfänger- & Spenderflächen sowie renaturierten & nicht renaturierten Bereichen
- NMDS-Ordination:
 - Vergleich der Artenzahl aller Blütenpflanzen zwischen Empfänger- & Spenderflächen
- Übertragungsrate der Zielarten pro Renaturierung
- Artspezifischer Übertragungserfolg (Frequenz in 5 Kategorien)
- Einstufung als FFH 6510 entsprechend der lebensraumtypischen Artenzusammensetzung

1. Jahr nach Renaturierung

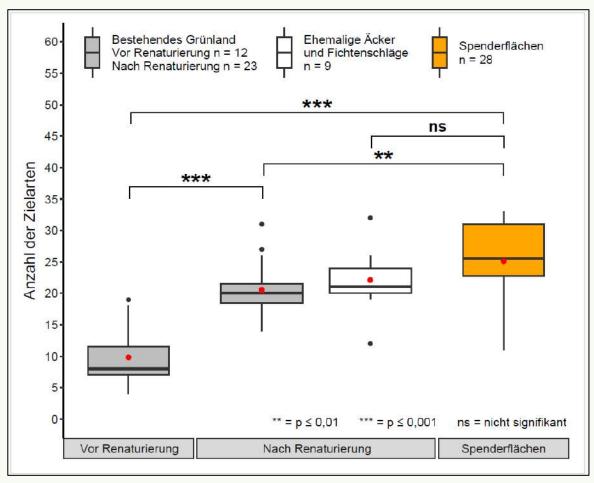
8. Jahr nach Renaturierung


Fotos: © SICONA

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173.

Entwicklung der Artenzusammensetzung

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.


→ Artenzusammensetzung der Renaturierungsplots entwickelt sich in Richtung der Spenderflächen

→ Tendenz, dass Renaturierungen von 7+ Jahren näher an Spenderflächen als jüngere

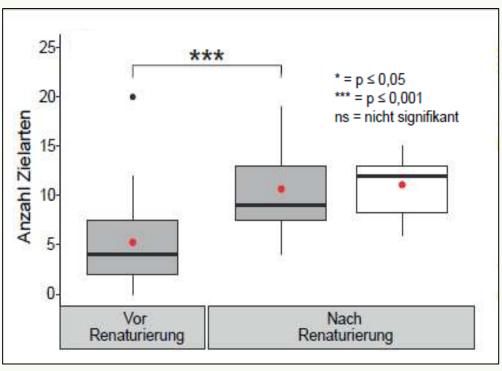
Vergleich Anzahl Zielarten auf Empfänger- & Spenderflächen

Vergleich der Anzahl der Zielarten der Empfängerund Spenderflächen vor & nach der Renaturierung getrennt nach Vornutzung

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.

→ Signifikante Zunahme an Zielarten nach Renaturierung auf Empfängerflächen

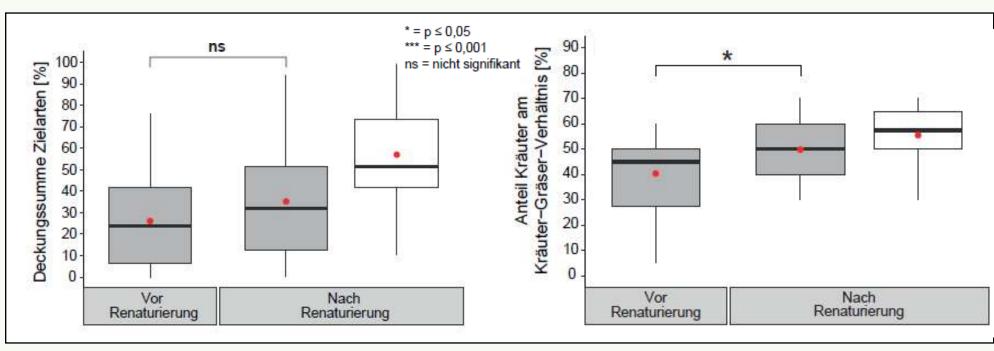
Vornutzung der Empfängerflächen


> Bestehendes Grünland Vor Renaturierung n = 27 Nach Renaturierung n = 27

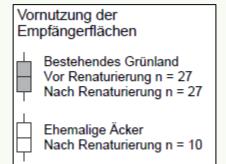
Nach Renaturierung n = 10

Ehemalige Äcker

Entwicklung Anzahl der Zielarten auf renaturierten Bereichen

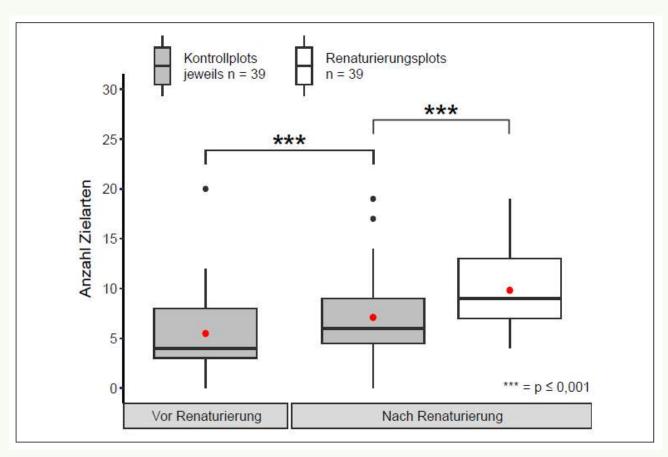

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173.

→ signifikante Zunahme der Anzahl der Zielarten auf renaturierten Bereichen



Entwicklung Deckung der Zielarten sowie des Kräuter-Gräser-Verhältnisses auf renaturierten Bereichen

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.



- → Deckungen Zielarten keine signifikante Zunahme auf renaturierten Bereichen
- → Anteil Kräuter am Kräuter-Gräser-Verhältnis erhöht auf renaturierten Bereichen

Vergleich Anzahl Zielarten auf renaturierten und nicht renatuierten Bereichen

Vergleich der Anzahl auf Kontroll- & Renaturierungsplots in **bestehendem Grünland**

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.

- → signifikante Zunahme der Anzahl der Zielarten in nicht renaturierten Bereichen (Kontrollplots)
- → dennoch bleibt Unterschied zwischen Renaturierungs- & Kontrollplots signifikant

Übertragungsraten der Zielarten in Abhängigkeit der Vornutzung

Tab. 2:	Anzahl übertragener Zielarten und mittlere Übertragungsraten der Zielarten auf der gesamten Empfängerfläche unterteilt nach	
	der Vornutzung der Empfängerflächen (n = 19); Werte auf ganze Zahlen gerundet. Angegeben sind der arithmetische Mittelwert	
	(MW), Standardfehler (SE), Minimum (Min) und Maximum (Max).	ı

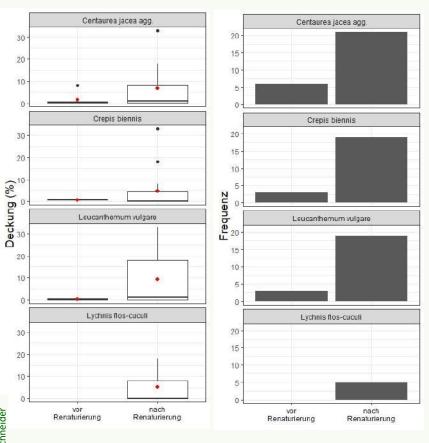
	n	Alter der Renaturierungen	Anzahl übertragener Zielarten		Übertragungsrate Zielarten [%]	
Ausgangszustand der Empfängerflächen			MW±SE	Min – Max	MW±SE	Min-Max
Bestehendes Grünland	10	1-9	11±1	5-15	45±5	20-57
Ehemalige Äcker und Fichtenschläge	9	1-8	22±2	12-33	76±6	41 – 100

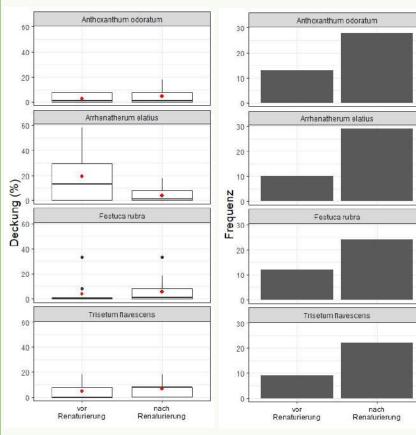
Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.

im Verhältnis zum Spenderflächeninventar wurden

- durchschnittlich 45 % der Zielarten der Spenderflächen auf bestehendem Grünland
- durchschnittlich <u>76 %</u> der Zielarten der Spenderflächen auf ehemaligen <u>Ackerflächen</u> übertragen

Übertragung der Zielarten (Beispiele)





Kräuter

Gräser

n = 64 (26 vor Renaturierung, 37 nach Renaturierung) Renaturierungen von bestehendem Grünland & ehemaligen Äckern

Artspezifischer Übertragungserfolg der Zielarten

100-61 %

(Kategorie I)

Crepis biennis, Agrostis capillaris, Cynosusrus cristatus, ..

(Kategorie II)

Lotus corniculatus, Ajuga reptans, Lychnis flos-cuculi, ..

40-21 %

(Kategorie III)

Primula veris, Pimpinella major, Tragopogon pratensis, ..

20-1%

(Kategorie IV)

Silaum silaus, Knautia arvensis, Sanguisorba minor, ..

(Kategorie V)

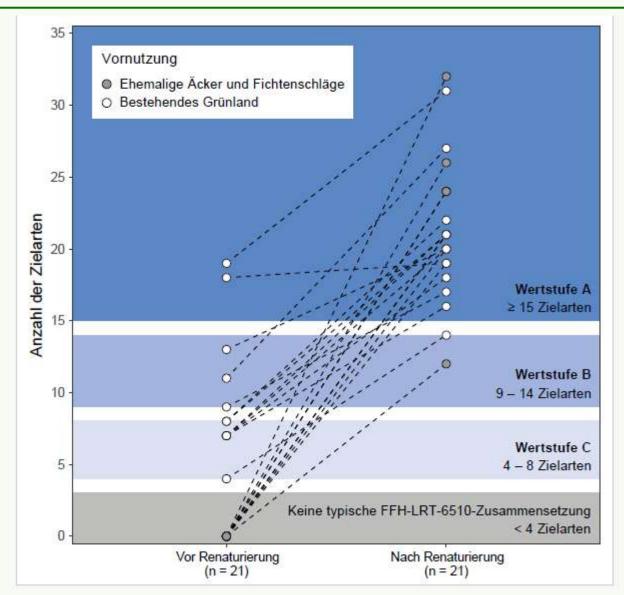
Campanula glomerata, Colchicum autumnale, ..

35 %

20 %

15 %

11 %


16 %

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. Natur und Landschaft 99(4): 161-173.

Einstufung als FFH-LRT 6510

Biro, Wolff & Schneider (2024): 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173.

Wiederherstellungen erfolgreich

- mit angewandten Wiederherstellungsmaßnahmen kann der Artenreichtum auf den Empfängerflächen erhöht werden
- Renaturierung ehemaliger Äcker & Fichtenschläge gelingt besser als auf Grünlandstandorten
- Renaturierungen von > 7 Jahre ähneln den Spenderflächen oft stärker als jüngere
- Renaturierungsplots im bestehenden Grünland entwickeln sich hin zu höheren Artenzahlen und geringeren Nährstoffniveaus (Vertragsnaturschutz)
- Ausbreitung der (meisten) Zielarten auch in nicht renaturierte Teilbereiche, langsamer Prozess
- Übertragbarkeit von Zielarten abhängig von vielen Faktoren (z. B. Häufigkeit auf Spenderfläche, Samenreife), Übertragungsraten im Mittel auf Grünlandflächen bei 45 %, auf Äckern bei 76 %
- seltene Arten werden schlechter übertragen → müssen gezielt eingebracht werden (Nachsaat oder Pflanzung)
- Renaturierungen von mesophilem Grünland waren erfolgreich
- → Artenzusammensetzung FFH 6510 A-Wertung erreicht

Fotos: © SICONA Biro, Wolff & Schneider (2024)

Erfolgskontrolle und deren Bedeutung

- → Monitoring von Grünlandrenaturierungen immer einplanen, da es essentiell ist, um Qualität der Maßnahmen zu prüfen & ggf. nachzusteuern
- → Unser Monitoring-Konzept auf Basis der Erfahrungen der letzten zehn Jahre empfehlenswert!
- → kaum praxiserprobte Vorgehensweisen zur Durchführung der Erfolgskontrollen
- → Für die Wertung & Vergleichbarkeit von Renaturierungen ist die Etablierung von einheitlichen Standards für die Erfolgskontrolle wichtig!

Wiederansiedlungen gefährdeter Pflanzenarten

4. Einmessen mit High Precision GPS

3. Auspflanzen

5. Monitoring (1., 2., 5. & 10. Jahr)

Wiederansiedlungen gefährdeter Pflanzenarten

In situ-Ansiedlungen seit 2013:

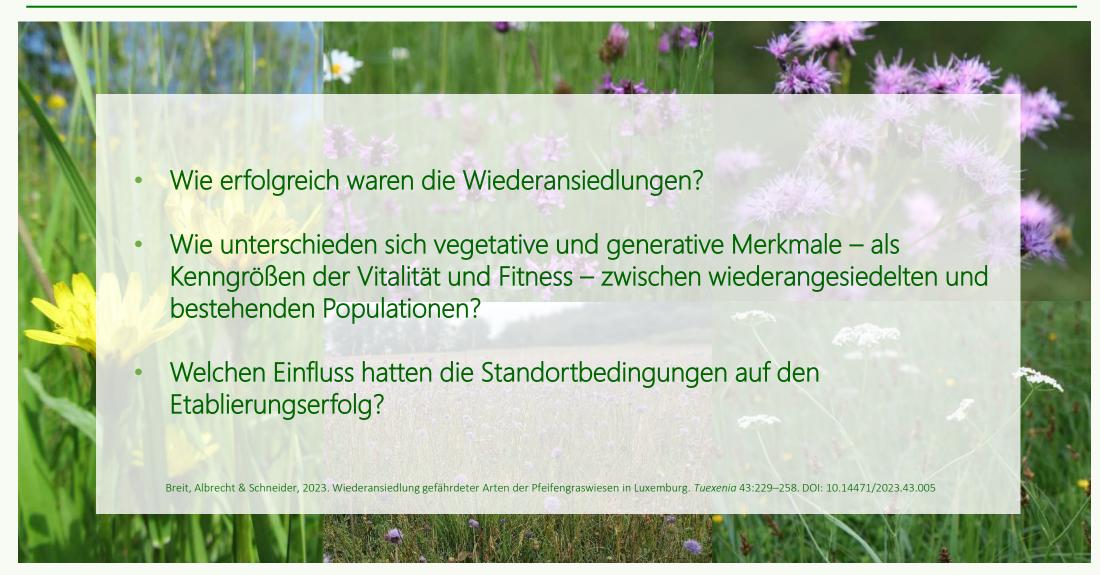
- > 35 Arten
- > als 25.000 Jungpflanzen
- auf > 100 Flächen

- als ergänzende Maßnahme bei Renaturierungen
- als Einzelmaßnahme in bestehenden Biotopen (botanischer Artenschutz)
- Überlebens- und Etablierungsraten sehr unterschiedlich

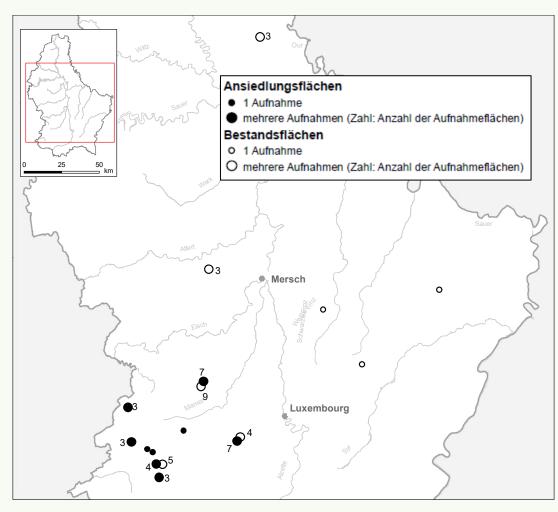
Campanula glomerata

Salvia pratensis

Succisa pratensis

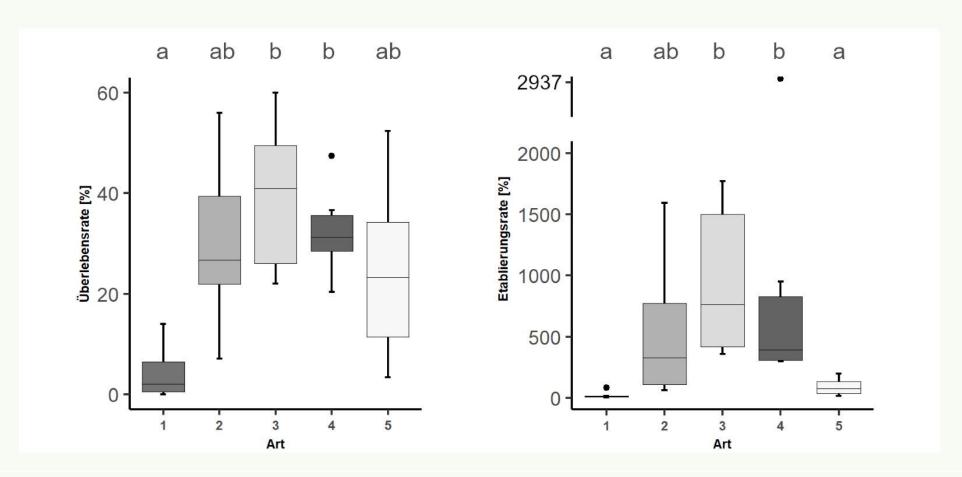


Forschungsfragen



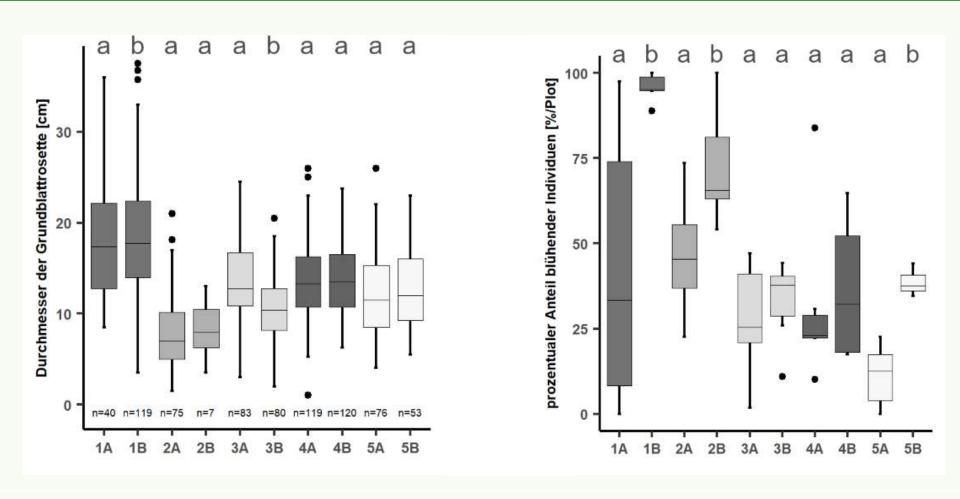
Methoden

- 6 angesiedelte & 6 bestehende Populationen pro Art (außer *Serratula tinctoria*)
- 57 Plots auf 30 Flächen
- Populationsgröße
- Phänometrische Merkmale
 - Pflanzenhöhe
 - Durchmesser der Grundblattrosette
 - Biomasse
- Reproduktive Merkmale
 - Anteil blühender Individuen
 - Blütenansätze pro Pflanze
- Bestehende Artenlisten



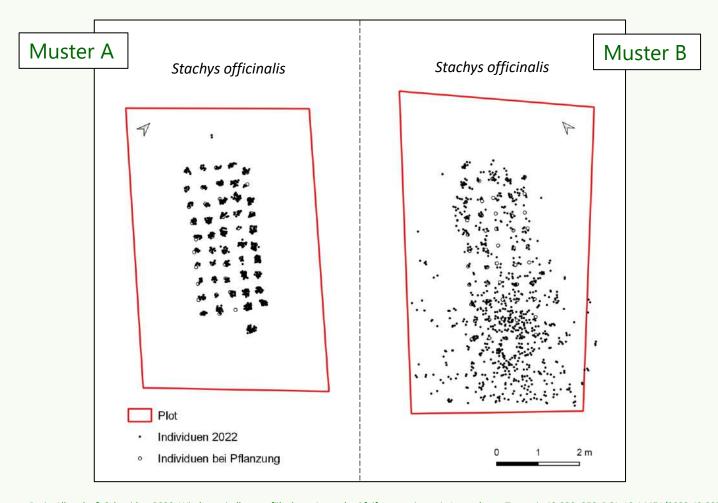
Breit, Albrecht & Schneider, 2023. Wiederansiedlung gefährdeter Arten der Pfeifengraswiesen in Luxemburg. *Tuexenia* 43:229–258. DOI: 10.14471/2023.43.005

Überleben & Etablierung



1 = Scorzonera humilis, 2 = Oenanthe peucedanifolia, 3 = Stachys officinalis, 4 = Succisa pratensis, 5 = Serratula tinctoria

Phänometrie & Reproduktion



1 = Scorzonera humilis, 2 = Oenanthe peucedanifolia, 3 = Stachys officinalis, 4 = Succisa pratensis, 5 = Serratula tinctoria A = introduced, B = reference

Räumliche Verteilung

2. Fallstudie Torfmoose

Ex situ-Vermehrung von *Sphagnum rubellum*

In Situ-Ansiedlung verbreitete Arten

- S. palustre, S. auriculatum
- S. fimbriatum, S. teres
- S. fallax/flexuosum

Schlussfolgerungen

- Auswahl geeigneter Flächen
- Wasserstandmessungen & Wasseranalysen → Gewährleistung dauerhaft hoher Wasserstände während der Wachstumsphase
- Oberbodenabtrag
- Ausbringen der Pflanzen & Auflage aus Strohmulch zur Beschattung
- 3 Methoden der in situ Pflanzung Einzelindividuen / Gruppen von ca. 10 Individuen / Agar-Agar mit Fragmenten
- Kombination aus In Situ & Ex Situ ideal!

Literatur

Nationaler Naturschutzplan Luxemburg

https://environnement.public.lu/content/dam/environnement/documents/natur/biodiversite/pnpn/pnpn-version-3.pdf

Strategie zum Erhalt und Wiederherstellung des artenreichen Grünlandes in Luxemburg

https://environnement.public.lu/dam-assets/documents/natur/plan action especes/Strategie-zum-Erhalt-und-Wiederherstellung-des-artenreichen-Grunlandes-in-Luxemburg-VsDef.pdf

Praxisanleitungen & Handreichungen zu Grünlandrenaturierungen

Schneider, S. & C. Wolff, 2020. Grünland-Renaturierungen mit autochthonem Spendermaterial in Luxemburg. *Natur in NRW* 3/2020: 22-27. https://sicona.lu/wp/wp-content/uploads/Schneider-Wolff-aus-Natur-NRW-03-2020.pdf

Wildpflanzenanbau zur Produktion autochthonen Saatgutes https://sicona.lu/projekte/saatgut

Erfolgskontrolle von Grünlandrenaturierungen

Biro, B., Wolff, C. & S. Schneider, 2024. 10 Jahre Monitoring belegen die Wiederherstellung Magerer Flachlandmähwiesen in Luxemburg. *Natur und Landschaft* 99(4): 161-173. https://doi.org/10.19217/NuL2024-04-01

Wolff, C. & S. Schneider, angenommen. Renaturierungsverfahren im mesophilen Grünland – ein Erfahrungsbericht aus der Praxis aus Luxemburg. BfN-Schriften.

In situ-Ansiedlungen seltener Pflanzenarten

Breit, F., Albrecht, H. & S. Schneider, 2023. Wiederansiedlung gefährdeter Arten der Pfeifengraswiesen in Luxemburg. *Tuexenia* 43: 229-258. https://doi.org/10.14471/2023.43.005. https://doi.org/10.14471/2023.43.005. https://www.tuexenia.de/publications/tuexenia/Tuexenia/2023 NS 043 0229-0258.pdf

Schneider, S., Wolff, J.-P. & F. Hans 2023. Wiederansiedlung von Torfmoosen in einem Niedermoor. Ein Erfahrungsbericht zur Kombination von In situ- und Ex situ-Verfahren. Naturschutz und Landschaftsplanung 10/2023: 12-21. https://doi.org/10.1399/Nul.2023.10.01

Vielen Dank für die Aufmerksamkeit!

